Calculation of NMR Parameters in the Solid State

Sharon Ashbrook School of Chemistry, University of St Andrews

Obtaining structural information

Why do we need calculations?

- Flexible way to study dependence of NMR parameters on local structure
- Models for disorder
- Information about dynamics

Quantum mechanics

• Magnetic resonance properties are inherently quantum mechanical

$$|1\rangle$$
 — — For one particle with two states we need to know two coefficients to describe the system

• For three particles with two states we now need eight coefficients

 $a|000\rangle + b|001\rangle + c|011\rangle + d|111\rangle + e|110\rangle + f|100\rangle + g|101\rangle + h|010\rangle$

Number of coefficients 2^N

- In a material the number of states and the number of particles is very large
- Need to make some approximations

Quantum mechanics

• The many-particle Schrodinger equation cannot be solved

• Born-Oppenheimer approximation assumes nuclei are static

$$H_{el} = \text{electron kinetic} + \frac{\text{nuclear/electron}}{\text{potential}} + \frac{\text{electron/electron}}{\text{potential}}$$

$$E = E_{el} + \frac{\text{nuclear/nuclear}}{\text{potential}}$$

Hartree-Fock theory

- The many-electron wavefunction is replaced by a sum of products of oneelectron wavefunctions
- The electron-electron correlation is assumed to be zero (obviously incorrect)
- Wavefunctions are usually expressed as linear combinations of atomic orbitals (basis functions, B)
- Computational effort is ∝ B⁴ or B³
- Restricted to first half of periodic table and moderate size molecules/systems

Density functional theory (DFT)

• An alternative approach involves writing the total energy solely in terms of a functional of the density (relatively easily calculated at any point in space)

```
E[\rho] = E^{KE}[\rho] + E^{charge}[\rho] + E_{xc}[\rho] + E^{nuclear}[\rho]
```

 Generally computationally easier/faster/cheaper so can be performed for larger systems and for all/more of the periodic table

Density functional theory (DFT)

- The problem is we don't know the exchange/correlation energy
- Local density approximation (LDA)

$$E_{xc}[\rho] = \int \varepsilon_{xc}(\rho) \rho(\mathbf{r}) d^{3}\mathbf{r}$$

- Energy depends upon the local density only (calculated for a uniform electron cloud)
- "First-Principles"
- Generalized gradient approximation (GGA)

$$\mathsf{E}_{\mathsf{xc}}[\rho] = \int \varepsilon_{\mathsf{xc}}(\rho, \nabla \rho) \rho(\mathbf{r}) \, \mathsf{d}^{3}\mathbf{r}$$

- Energy depends upon the gradient of the density
- Can be incorporated in a number of ways (PBE, BLYP)
- "First-Principles"?

Extended systems

• For molecules the extent of the system is well defined and atomic orbitals (and their linear combinations) are a good basis set

• What about the extended systems we regularly see in solids?

Cluster approximation

- Approximate an "infinite" solid as a cluster around a central atom
- Termination of dangling bonds, usually with ¹H
- Accurate results require larger and larger cluster sizes
- Large clusters become expensive quickly
- Atom-based orbitals usually used as basis sets
- Accuracy determined by size/type of basis set and choice/position of termination

Periodic boundary conditions

- Exploit the translational symmetry of the structure
- Use the unit cell and impose three-dimensional periodic boundary conditions
- Long range effects reproduced well and no termination problems
- Accurate results for all atoms and atom types in the unit cell simultaneously
- Often used with plane waves as a basis set
- Quality of basis set controlled by a single number (E_{cut})

 $e^{i(4\sqrt{E_{cut}}) \cdot r}$

Pseudopotentials

- So how can we calculate an "infinite" number of atoms?
- Use a pseudopotentials to reduce calculation demands

frozen core "smoothed" valence orbitals

- BUT, the core electron information is needed to calculate the NMR chemical shift!
- Can "fix up" wavefunctions near the nucleus (i.e., reconstruct the all electron wavefunction)
- PAW and GIPAW

Doing calculations

- Gaussian
- Implements a molecular/cluster approach
- HF or DFT
- Gaussian basis set
- Good for molecules, molecular solids
- WIEN
- Periodic solids with LAPW
- DFT
- Mixed basis set
- Very accurate all-electron approach for EFG only but long and costly to run
- CASTEP
- Periodic solids with GIPAW
- DFT
- Plane wave basis set
- Growing interest in use for chemical shift and quadrupolar calculations

Doing calculations

• CASTEP, GGA-PBE and ultrasoft pseudopotentials

20-60 atoms (depending on size) *in unit cell* on a pc 100-200 atoms *in unit cell* on a cluster Up to 1000 atoms *in unit cell* on a supercomputer?

Initial structure

- Where do you get the initial structure from?
 Diffraction Neutron, powder X-ray, single crystal X-ray
- Varying quality
- Protons typically misplaced
- "Average" occupancies of sites
- Flexibility of the structure

 How do you know if the structure/results are accurate? Check the forces on the atoms

- Geometry optimization
 - Vary positions of some or all of the atoms
 - Fix or vary the unit cell size and shape
 - Retain or break the symmetry

Geometry optimization

Rigid framework (neutron structure)

0-0.2 eV/Å

	δ_{iso} (ppm)	C_Q / MHz	η_Q
1	40.1	1.67	0.29
2	77.7	5.05	0.94
3	69.3	4.64	0.20
4	67.1	4.01	0.30

0-0.05 eV/Å

		$\delta_{\text{iso}} \text{ (ppm)}$	C_Q / MH z	η_Q
_	1	41.1	1.68	0.44
	2	80.2	5.17	0.93
	3	71.6	4.77	0.20
	4	69.9	4.12	0.30

Geometry optimization

Flexible framework (powder X-ray structure)

	δ_{iso} (ppm)	C_Q / MH z	η_Q
1	38.5	5.30	0.08
2	48.6	9.69	0.26
3	40.3	5.55	0.74
4	55.9	7.04	0.57

	δ_{iso} (ppm)	C_Q / MH z	η_Q
1	46.5	3.72	0.95
2	46.8	3.44	0.48
3	41.8	2.22	0.37
4	48.7	4.50	0.27

Referencing

- Unlike experiment, it can be difficult to reference chemical shifts in calculations
- Need a simple reference structure (e.g., SiO₂, Al₂O₃, Y₂O₃, etc.,)
- Not all atom types in the real system are present?
- Geometry optimize?
- Converged to the same accuracy?
- Alternative approach is to reference within a calculation or between similar species
- Relative shifts converge much more rapidly than absolute shieldings
- All atom types are present
- Benefit from cancellation of errors
- As experimentalists we need to balance absolute accuracy both with cost but also with the level of information required for spectral analysis and interpretation

Dynamics?

- Calculations are typically performed at 0 K
- NMR is typically performed at 298 K
- Diffraction is typically performed at 120 K
- There is significant motion in the solid state over a range of timescales

- Calculations can still be used to offer insight and help spectral interpretation
- Significant differences between experiment and calculation can suggest motion

Supercells

• Systems with lower periodicity can be studied using a supercell approach

• Problems such as cation disorder, defects, solution

¹⁷O NMR of enstatite

Ashbrook et al., J. Am. Chem. Soc. **129**, 13213 (2007)

Soc. 129, 13213 (2007)

¹⁷O NMR of enstatite

 Previous assignment based upon "empirical" relationships and the similarity of O environments to other known silicates

Ashbrook et al., J. Am. Chem. Soc. **129**, 13213 (2007)

Radiation damage in ZrSiO₄

- Decrease in ²⁹Si chemical shift in radiation-damaged zircon
- Usually, δ increases with unit cell volume/bond length

Ferrierite

 Much debate in the literature over the assignment of the ¹⁷O spectrum of ferrierite (a silica zeolite with 10 distinct O species)

rofeta et al., J. Am. Chem. Soc. **125**, 541 (2003)

CSA calculations

- ¹³C NMR spectrum of maltose contains closely spaced resonances which are difficult to assign
- CSAs measured using a 2D amplification technique

CASTEP calculations

- Spectral assignment
- Good agreement for isotropic shifts
- CSA consistently over estimated by 1.33 but can be rescaled

Calculation of J couplings

 Accurate calculation of scalar or J couplings in the solid state

 Applications to the detection and characterization of intramolecular hydrogen bonds

Brown and Pickard, in preparation

Solid-state reactions

• Boroxophenanthrene undergoes reaction in the solid state but not in solution

11 out of 12 carbons observed

24 carbons

Solid-state reactions

Solid-state reactions

Sc-based perovskites

supercell

Sc-based perovskites

	δ_{iso} (ppm)	C _Q / MHz	η_{Q}
LaScO₃	189.71	3.19	0.64
La _{0.75} Y _{0.25} ScO ₃	186.95	7.62	0.40
	192.71	-4.64	0.83
$La_{0.5}Y_{0.5}ScO_3$ (A)	187.57	6.59	0.92
La _{0.5} Y _{0.5} ScO ₃ (B)	184.43	12.03	0.36
	192.57	8.25	0.82
La _{0.5} Y _{0.5} ScO ₃ (C)	190.11	4.8	0.98
$La_{0.25}Y_{0.75}ScO_3$	185.45	9.76	0.38
	187.93	-7.77	0.49
YScO₃	184.06	-8.44	0.84
La _{0.875} Y _{0.125} ScO ₃	186.41	8.48	0.26
	191.22	-4.39	0.58
	190.89	-3.79	0.85
	191.42	-6.06	0.73

7.3 ± 2.6 MHz, 0.66 ± 0.24, 188.1 ± 3 ppm

Resolving crystal structures

 Use of DFT (CASTEP) to refine the ¹H positions for X-ray structures and match the NMR parameters

Pickard et al., J. Am. Chem. Soc. 129, 8932 (2007)

Resolving crystal structures

- Combination of experimental proton driven spin diffusion measurements with
 MM to produce candidate structures
- Geometry optimization using CASTEP and comparison of NMR data to refine the structures

