# Introduction to Quadrupolar NMR

Sharon Ashbrook School of Chemistry, University of St Andrews





# Interactions in NMR



# Quadrupolar nuclei

#### The Periodic Table of the Elements

| 1                   |                                                  |                          |                   |                      |                    |                        |                  |            |                     |                   |         |                      |               |                      |           |                   | 2              |
|---------------------|--------------------------------------------------|--------------------------|-------------------|----------------------|--------------------|------------------------|------------------|------------|---------------------|-------------------|---------|----------------------|---------------|----------------------|-----------|-------------------|----------------|
| Н                   |                                                  |                          |                   |                      |                    |                        |                  |            |                     |                   |         |                      |               |                      |           |                   | Не             |
| Hydrogen            | I = 1/2                                          |                          |                   |                      |                    |                        |                  |            |                     |                   |         | Helium               |               |                      |           |                   |                |
| 1.00/94             |                                                  |                          |                   |                      |                    |                        |                  |            |                     |                   | 4.003   |                      |               |                      |           |                   |                |
| 3<br>• •            |                                                  |                          |                   |                      |                    |                        |                  |            |                     |                   |         |                      |               |                      |           |                   |                |
| LI                  | ве                                               | Be Quadrupolar B C N O F |                   |                      |                    |                        |                  |            |                     |                   | Ne      |                      |               |                      |           |                   |                |
| 6.941               | 9.012182                                         |                          |                   |                      |                    |                        |                  |            |                     |                   |         | 10.811               | 12.0107       | 14.00674             | 15.9994   | 18.9984032        | 20.1797        |
| 11                  | 12 13 14 15 16 17 1                              |                          |                   |                      |                    |                        |                  |            |                     |                   | 18      |                      |               |                      |           |                   |                |
| Na                  | Mg Al Si P S Cl A                                |                          |                   |                      |                    |                        |                  |            |                     |                   | Ar      |                      |               |                      |           |                   |                |
| Sodium              | Magnesium Silicon Phosphorus Sulfur Chlorine Arg |                          |                   |                      |                    |                        |                  |            |                     | Argon             |         |                      |               |                      |           |                   |                |
| 10                  | 24.3050                                          | 21                       | 22                | 22                   | 24                 | 25                     | 26               | 27         | 20                  | 20                | 20      | 26.981538            | 28.0855       | 30.973761            | 32.066    | 35.4527           | 39.948         |
| 19                  | 20                                               | 21                       | 22                | 23                   | 24                 | 25                     | 20               | 27         | 28                  | 29                | 30      | 51                   | 32            | 33                   | 54        | 33                | 30             |
| K                   | Ca                                               | Sc                       | Ti                |                      | Cr                 | Mn                     | Fe               | Co         | Ni                  | Cu                | Zn      | Ga                   | Ge            | As                   | Se        | Br                | Kr             |
| 39.0983             | 40.078                                           | 44.955910                | 47.867            | 50.9415              | 51.9961            | Manganese<br>54.938049 | 55.845           | 58.933200  | 58.6934             | 63.546            | 65.39   | 69.723               | 72.61         | 74.92160             | 78.96     | 79.904            | 83.80          |
| 37                  | 38                                               | 39                       | 40                | 41                   | 42                 | 43                     | 44               | 45         | 46                  | 47                | 48      | 49                   | 50            | 51                   | 52        | 53                | 54             |
| Rb                  | Sr                                               | Y                        | Zr                | Nb                   | Mo                 | Tc                     | Ru               | Rh         | Pd                  | Ag                | Cd      | In                   | Sn            | Sb                   | Те        | Ι                 | Xe             |
| Rubidium            | Strontium                                        | Yttrium                  | Zirconium         | Niobium              | Molybdenum         | Technetium             | Ruthenium        | Rhodium    | Palladium           | Silver            | Cadmium | Indium               | Tin           | Antimony             | Tellurium | Iodine            | Xenon          |
| 85.4678             | 87.62                                            | 88.90585                 | 91.224            | 92.90638             | 95.94              | (98)                   | 101.07           | 102.90550  | 106.42              | 107.8682          | 112.411 | 01                   | 118.710       | 121.760              | 127.60    | 126.90447         | 131.29         |
| 33                  | - 30<br>- D                                      | 5/                       | 12                | /3                   | /4                 | 15                     | /0               | //         | 78                  | /9                | 80      | 81                   | 82            | 83                   | 84<br>D   | 85                | 80             |
| Cs                  | Ва                                               | La                       | Hf                | Ta                   | W                  | Re                     | Os               | Ir         | Pt                  | Au                | Hg      | TI                   | Pb            | Bi                   | Po        | At                | Rn             |
| Cesium<br>132.90545 | Barium<br>137.327                                | Lanthanum<br>138.9055    | Hafnium<br>178.49 | Tantalum<br>180.9479 | Tungsten<br>183.84 | Rhenium<br>186.207     | 0smium<br>190.23 | 192.217    | Platinum<br>195.078 | Gold<br>196.96655 | 200.59  | Thallium<br>204.3833 | Lead<br>207.2 | Bismuth<br>208.98038 | (209)     | Astatine<br>(210) | Radon<br>(222) |
| 87                  | 88                                               | 89                       | 104               | 105                  | 106                | 107                    | 108              | 109        | 110                 | 111               | 112     | 113                  | 114           |                      |           |                   |                |
| Fr                  | Ra                                               | Ac                       | Rf                | Db                   | Sg                 | Bh                     | Hs               | Mt         |                     |                   |         |                      |               |                      |           |                   |                |
| Francium            | Radium                                           | Actinium                 | Rutherfordium     | Dubnium              | Seaborgium         | Bohrium                | Hassium          | Meitnerium |                     |                   |         |                      |               |                      |           |                   |                |
| (223)               | (226)                                            | (227)                    | (261)             | (262)                | (263)              | (262)                  | (265)            | (266)      | (269)               | (272)             | (277)   |                      |               |                      |           |                   |                |

| 58       | 59           | 60        | 61         | 62        | 63        | 64         | 65        | 66          | 67          | 68      | 69          | 70        | 71         |
|----------|--------------|-----------|------------|-----------|-----------|------------|-----------|-------------|-------------|---------|-------------|-----------|------------|
| Ce       | Pr           | Nd        | Pm         | Sm        | Eu        | Gd         | Tb        | Dy          | Ho          | Er      | Tm          | Yb        | Lu         |
| Cerium   | Praseodymium | Neodymium | Promethium | Samarium  | Europium  | Gadolinium | Terbium   | Dysprosium  | Holmium     | Erbium  | Thulium     | Ytterbium | Lutetium   |
| 140.116  | 140.90765    | 144.24    | (145)      | 150.36    | 151.964   | 157.25     | 158.92534 | 162.50      | 164.93032   | 167.26  | 168.93421   | 173.04    | 174.967    |
| 90       | 91           | 92        | 93         | 94        | 95        | 96         | 97        | 98          | 99          | 100     | 101         | 102       | 103        |
| Th       | Pa           | U         | Np         | Pu        | Am        | Cm         | Bk        | Cf          | Es          | Fm      | Md          | No        | Lr         |
| Thorium  | Protactinium | Uranium   | Neptunium  | Plutonium | Americium | Curium     | Berkelium | Californium | Einsteinium | Fermium | Mendelevium | Nobelium  | Lawrencium |
| 232.0381 | 231.03588    | 238.0289  | (237)      | (244)     | (243)     | (247)      | (247)     | (251)       | (252)       | (257)   | (258)       | (259)     | (262)      |

#### Quadrupolar nuclei

#### I = 1

Deuterium Lithium-6 Nitrogen-14

| = 3/2

Lithium-7 Boron-11 Sodium-23 Chlorine-35 Potassium-39 Gallium-71 Rubidium-87 I = 5/2

Oxygen-17 Magnesium-25 Aluminium-27

| = 7/2

Scandium-45 Vanadium-51 Cobalt-59

| = 9/2

Niobium-93

# Origin of the quadrupolar interaction

• Nuclear structure can be described by expansion as a series of multipoles

| Spin    | monopole | dipole   | quadrupole | octapole |  |
|---------|----------|----------|------------|----------|--|
| I = 0   | electric | 0        | 0          | 0        |  |
| I = 1/2 | electric | magnetic | 0          | 0        |  |
| I = 1   | electric | magnetic | electric   | 0        |  |
| I = 3/2 | electric | magnetic | electric   | magnetic |  |



- Nuclei with spin quantum number I > 1/2 have a non spherical distribution of charge in the nucleus
- This gives rise to a quadrupole moment (eQ)

## Origin of the quadrupolar interaction

The quadrupole moment interacts with the electric field gradient (EFG) present at the nucleus (eq)



• The interaction is anisotropic, i.e., depends upon orientation

#### **Quadrupolar Hamiltonian**



#### **Quadrupolar Hamiltonian**

• The frame where V is diagonal is called the principal axis system (PAS)

• This gives the Hamiltonian in the PAS

$$H_{Q}^{PAS} = \frac{3eQV_{ZZ}}{4I(2I-1)\hbar} \left[I_{Z}^{2} - \frac{1}{3}I(I+1) + \frac{\eta_{Q}}{3}(I_{X}^{2} - I_{Y}^{2})\right]$$

# Definitions

• Magnitude (also QCC, NQCC,  $C_q$ ,  $\chi_Q$ ,  $\chi$ )

 $C_Q = (eQV_{ZZ}) / h = (eQeq) / h$ 

• Quadrupolar splitting parameter

 $\omega_Q^{PAS} = 3C_Q/4I(2I-1)$  (or  $\omega_Q^{PAS} = 3C_Q/2I(2I-1)$ )

• Asymmetry (cross-sectional shape)

$$\eta_Q = (V_{XX} - V_{YY})/V_{ZZ}$$
 with  $0 < \eta_Q < 1$ 

Quadrupolar product

$$P_Q = C_Q (1 + \eta_Q^2/3)^{1/2}$$

# Origin of the EFG

- The EFG is caused by the distribution of charges in the system
- We can estimate to a first approximation that it arises from the coordinating atoms
- In reality longer range interactions need to be included



#### Perturbation theory

• Neglecting dipolar and CSA contributions, we can write the total Hamiltonian as the sum of the Zeeman and and quadrupolar Hamiltonians

 $H = H_Z + H_Q$ 

• Although often large, the quadrupolar interaction is usually much smaller than the dominant Zeeman interaction

 $C_Q \sim 0$  to 30 MHz

• Its effect on the nuclear energy levels may therefore be described as a perturbation (or a correction) to the Zeeman levels

First-order approximation

$$E = E_{Z} + E_{Q}$$

# Spin I = 1



Zeeman

# Spin I = 1





single crystal

Quadrupolar Zeeman

$$\omega_{Q} = \omega_{Q}^{PAS} \frac{1}{2} (3 \cos^{2}\theta - 1 + \eta_{Q} \sin^{2}\theta \cos 2\gamma)$$

# Spin I = 1



#### Spin I = 1 lineshapes



- The broad quadrupolar lineshapes can be difficult to acquire accurately
- Solution is to use an echo pulse sequence



• To refocus the quadrupolar broadening we need a quadrupolar echo



Selection of p = ±1 coherences pathways refocuses quadrupolar broadening and gives good S/N

Selection of p = +1 coherence ("Exorcycle") refocuses quadrupolar broadening and CSA but lower S/N

> See Antonijevic et al., J. Magn. Reson. **164**, 343 (2003)

 $90^{\circ}_{x} - \tau - 90^{\circ}_{y}$ 

## Effect of MAS



MAS

static

# $\omega = \omega_{Q}^{PAS} d_{00}^{2}(\beta) d_{00}^{2}(\beta_{R})$

 $\omega = \omega_{0}^{\text{PAS}} d_{00}^{2} (\beta)$ 



- The quadrupolar broadening has a similar orientational dependence to dipolar and CSA interactions and so can be removed by magic angle spinning
- The magnitude of the interaction is often such that many spinning sidebands are observed even at fast MAS rates



#### Example: <sup>2</sup>H NMR of oxalic acid



*Cutajar et al., Chem. Phys. Lett.* **423**, 278 (2006)

# **Rotor synchronization**

 To improve sensitivity and ensure accurate lineshapes we can rotor synchronize our spectral acquisition





# High spin systems



# Effect of MAS

- As for spin I = 1, the quadrupolar broadening in the ST (proportional to  $3\cos^2 \theta 1$ ) can be removed by magic-angle spinning
- The magnitude of the interaction is often such that many spinning sidebands are observed even at fast MAS rates



#### CT observation

 In many cases the ST are so broad they are rarely observed (or excited) and so we focus attention only on the CT



Feuerstein et al., Micro. Meso. Mater. **26**, 27 (1998)

#### Second-order quadrupolar broadening

 When the perturbing interaction is large the first-order correction described previously may not be sufficient to fully describe the system and we need to use higher-order correction terms

#### $E = E_Z + E_Q^{(1)} + E_Q^{(2)} + E_Q^{(3)} + \dots$

• For the quadrupolar interaction, the perturbation to a second-order approximation often needs to be considered

 $E = E_{Z} + E_{Q}^{(1)} + E_{Q}^{(2)}$ 

• The second-order correction is much smaller than the first-order correction

# Spin I = 3/2





# Spin I = 3/2



#### Second-order quadrupolar broadening

- Second-order quadrupolar frequency for an energy level/transition can be described (for  $\eta_{\text{Q}}$  = 0) by



 $d_{00}^2(\theta) \propto (3\cos^2\theta - 1)$ 

 $d_{00}^4(\theta) \propto (35 \cos^4 \theta - 30 \cos^2 \theta + 3)$ 

# Second-order quadrupolar broadening

| Spin    | Transition      | A      | В      | С       |  |
|---------|-----------------|--------|--------|---------|--|
| I = 3/2 | СТ              | -2/5   | -8/7   | 54/35   |  |
|         | ST              | 4/5    | 4/7    | -48/35  |  |
| I = 5/2 | СТ              | -16/15 | -64/21 | 144/35  |  |
|         | $ST_1$          | 2/5    | -4/3   | 6/5     |  |
|         | ST <sub>2</sub> | 56/15  | 80/21  | -264/35 |  |

#### Spin I = 3/2 CT lineshapes



#### Quadrupolar broadening and MAS

With sample rotation around  $\beta_{\mathsf{R}}$ 

$$\omega \propto \frac{\left(\omega_{Q}^{PAS}\right)^{2}}{\omega_{0}} \left[A + B d_{00}^{2}\left(\beta_{R}\right) d_{00}^{2}\left(\beta\right) + C d_{00}^{4}\left(\beta_{R}\right) d_{00}^{4}\left(\beta\right)\right]$$
$$d_{00}^{2}(\beta_{R}) \propto (3 \cos^{2}\beta_{R} - 1)$$

$$d_{00}^4(\beta_R) \propto (35 \cos^4 \beta_R - 30 \cos^2 \beta_R + 3)$$

- Second-rank term  $d_{00}^2(\beta_R) = 0$  when  $\beta_R = 54.736^\circ$
- But d<sup>4</sup><sub>00</sub>(54.736°) ≠ 0, so although the lineshape is narrowed under MAS the quadrupolar broadening is not completely removed
- To ensure  $d_{00}^4(\beta_R) = 0$ ,  $\beta_R$  must be 30.56° or 70.12°

#### Quadrupolar broadening and MAS



- Lineshape is significantly narrowed by MAS
- Fourth-rank anisotropic quadrupolar broadening remains
- Isotropic quadrupolar shift

 $\propto ((\omega_Q^{PAS})^2/\omega_0) A (1 + \eta_Q^2/3)$ 

#### Spin I = 3/2 MAS lineshapes



#### Spin I = 3/2 VAS lineshapes

 No single angle is able to remove both the second-rank and fourth-rank second-order quadrupolar broadening



Ganapathy et al., J. Chem. Phys. 4360, 77 (1982)

- We use MAS in order to ensure dipolar interactions and CSA is removed along with the second-rank quadrupolar broadening
- A pulse rarely executes the perfect rotation, unless  $\omega_1$  is greater than any offsets present in the system

 $\omega_1 >> \omega_0^{PAS}$ 

"hard" pulse

"non-selective" pulse

nutation at rate of  $\omega_1$ 

CT nutation rate (I + 1/2)  $\omega_1$ 

"selective" pulse

 $\omega_1 << \omega_0^{PAS}$ 

"soft" pulse

different nutation rates depending on  $\omega_{1}$  and  $\omega_{\text{Q}}^{\text{ PAS}}$ 

- For CT gradual progression from  $\omega_1$  to (I + 1/2)  $\omega_1$  as  $\omega_Q^{PAS}$  increases
- Use low power pulses to ensure CT selectivity and minimal lineshape distortion



Kentgens, Geoderma **80**, 271 (1997)

- If the second-order quadrupolar broadening interaction is large we may require an echo to acquire the broad CT lineshapes
- To refocus second-order quadrupolar broadening we need a spin or Hahn echo not a quadrupolar echo



For CT observation low-power selective pulses are used (~15-30 µs for 90°)

- The  $\tau$  duration should be chosen to minimise any T<sub>2</sub> differences either between sites or across a powder lineshape
- For best results,  $\tau$  should also be synchronized with the rotor (i.e.,  $\tau = n \tau_R$ )



#### Example: <sup>23</sup>Na NMR

- Novel layered material Na<sub>2</sub>[(VO)<sub>2</sub>(HPO<sub>4</sub>)<sub>2</sub>C<sub>2</sub>O<sub>4</sub>].2H<sub>2</sub>O
- Space group cannot be determined easily by X-ray  $P2_1/m$  or  $P2_1$
- 2 distinct resonances by <sup>23</sup>Na MAS NMR
- Space group cannot be  $P2_1/m$





Ashbrook et al., Inorg. Chem. **45**, 6034 (2006)

# Example: <sup>27</sup>Al NMR of minerals

- Substitution of AI into MgSiO<sub>3</sub> is important in the inner Earth
- Where does the AI substitute, the six-coordinate Mg site or the four-coordinate Si site?



#### **MAS** lineshapes

 In many cases, the overlap of a number of broad resonances hinders spectral interpretation and assignment



How many oxygen species are present?

What are their quadrupolar and chemical shift parameters?

How can we remove the broadening and obtain a highresolution spectrum?