

Two-dimensional separation experiments: measuring anisotropic interactions

Jeremy Titman, School of Chemistry, University of Nottingham

Two-dimensional separation experiments

A two-dimensional separation experiment consists of three time periods: Preparation, evolution and detection.

- * The evolution and detection Hamiltonians are different.
- * The two-dimensional spectrum separates the spectra which result from the two Hamiltonians.

Philosophy

"Solution-like" approach: Rapid MAS, Efficient Decoupling $H = H_{iso}$ No orientational information; recoupling

"Classical solids" approach: Slow (or no) MAS H = ? Retain orientational information

Types of separation

Shift anisotropy and isotropic shift

- * Many experiments have been designed which separate the isotropic and anisotropic parts of the chemical shift Hamiltonian.
- * These are used to obtain the shift anisotropies of complicated molecules where overlap of powder patterns or sideband manifolds from different chemical sites prevents their measurement using a one-dimensional spectrum.

Heteronuclear dipolar coupling and chemical shift

- * The archetypal two-dimensional separation method is the "separated local field" experiment
- * This is used to establish the orientation of the principal axis system of the chemical shift tensor relative to the molecule.

Experimental approaches

Wideline separation

* A non-spinning experiment gives a powder lineshape in two dimensions

Recoupled Hamiltonian

 MAS gives resolution in v₂ while a recoupling sequence reintroduces the desired Hamiltonian to give a "powder pattern" in v₁.

Separation of MAS sideband manifolds

- * Sideband manifolds in v_1 are separated by the isotropic shift in v_2 .
- * With very slow spinning ("magic angle turning") sequences of π pulses are used to give the isotropic shift in v_1 and sideband manifolds in v_2 .

"Separated local field" experiment

- * This separates the heteronuclear dipolar coupling in v_1 and the chemical shift in v_2 .
- The resulting two-dimensional spectrum depends on the relative orientation of the dipolar coupling tensor (with the z axis along the internuclear vector) and the chemical shift tensor (usually with an unknown orientation).

K. Schmidt-Rohr, M. WIIhelm, A, Johansson and H.W. Spiess, Magn. Reson. Chem., 31, 352 (1993).

Separation of "recoupled" powder patterns

These experiments separate a recoupled powder pattern in v_1 and the isotropic shift in v_2 .

Example: cellulose

The carbon-13 chemical shift tensors measured in this way have been used as restraints in a molecular dynamics refinement of the neutron structure.

R. Witter, U. Sternberg, S. Hesse, T. Kondo, F. T. Koch and A. S. Ulrich, *Macromolecules*, **39**, 6125 (2006).

Shift anisotropies by MAS sidebands

- * MAS allows the resolution of different chemical environments via their isotropic shifts.
- * With slow MAS the envelope of the sideband intensities reflects the shift anisotropy.
- * A few sidebands give a more reliable result for the anisotropy than a wideline spectrum.

Problems with MAS sideband measurements

2D-PASS

This experiment separates the anisotropic part of the chemical shift measured via the sideband manifold in v_1 and the isotropic shift in v_2 . Advantages of 2D-PASS include:

- \star a minimal number of t₁ increments is required
- * the v_1 sideband pattern is identical to the MAS pattern
- * the use of short sequences and few π pulses

O. N. Antzutkin, S. C. Shekar and M. H. Levitt, J. Magn. Reson., Ser. A, 115, 7 (1995); J. R. Smith. W. Xu and D. Raftery, J. Phys. Chem. B, 110, 7766 (2006).

Problems with MAS sideband measurements

CSA amplification: method

The CSA amplification method separates the fast MAS spectrum in v_2 from a sideband pattern in v_1 identical to that observed at some fraction of the actual rate.

C. Crockford, H. Geen, and J. J. Titman, Chem. Phys. Lett., 344, 367 (2001); L. Shao, C. Crockford, H. Geen, G. Grasso, and J. J. Titman, J. Magn. Reson., 167, 75 (2004).

CSA amplification: advantages

Advantages of the CSA amplification method include:

- a minimal number of t₁
 increments is required
- the v₁ sideband pattern is identical to the slow MAS pattern
- * short sequences and few π pulses
- no need for slow unstable spinning even for small shift tensors
- amplification independent of sequence length

Sucrose

Optimum number of sidebands for measurement of shift anisotropy

Shift anisotropies by CSA amplification

Validation of the CSA amplification method

Maltose

Poor shift dispersion in saccharides prevents assignment of carbon-13 spectrum

Shift anisotropies by CSA amplification

Correlation of two shift parameters gives better resolution

Maltose: calculations and assignment

CASTEP/GIPAW

Combination with calculations allows assignment

L. Shao, J. Yates and J. J. Titman, J. Chem. Phys. A, **111**, 13126 (2007).

Summary

Two-dimensional **separation** experiments show spectra in the two dimensions which result from two different Hamiltonians.

Isotropic/anisotropic separation experiments are used to obtain the shift anisotropies of complicated molecules where **overlap** of powder patterns or sideband manifolds from different chemical sites prevents their measurement using a one-dimensional spectrum.

Separated local field experiments are used to to establish the orientation of the principal axis system of the chemical shift tensor relative to the molecule.